Carbosat is a modern device for baths in carbon dioxide. The device operates in a continuous mode - the user can retrieve the water saturated with CO$_2$ continuously, which allows to run 5 carbon dioxide treatments simultaneously.

Features:
- Water efficiently saturated with carbon dioxide (50 l/min.)
- High level of carbon dioxide saturation in water (2 g/l)
- Maximum number of connected Balmed bath tubs - 5
- Gauge indicating the pressure in the water supply network
- Electrowave automatically regulates the water supply
- Gauge indicating the pressure in the carbon dioxide supply network
- Electronic control panel
- Light indicates tank filling level
- Stainless steel tank (approx. 160 l) with ceramic rings, accelerating water saturation
- Safety guaranteed by usage of certified container

Technical data:
- Efficiency [l/min]: 50
- CO$_2$ saturation level [g/l]: 2
- Dimensions (height x diameter) [cm]: 187 x 32,4
- Weight [kg]: 140
- Power consumption [W]: 60
- Power supply [V/Hz]: 230/50

Carbobed is modern device for "dry" baths in carbon dioxide.

Carbon dioxide baths (CO$_2$) - indications:
- Rheumatic diseases
- Circulatory system illnesses
- Circulation disturbances of peripheral arterial vessels
- Burns and frostbites
- Hypo- and hypertonia
- Ulceration of shank
- Gangrene: diabetic, arteriosclerotic, angiospastic

Features:
- Fully automated treatment
- Effective and fast sealing of treatment chamber
- Automated refilling of CO$_2$ and circulation of gas inside treatment chamber allows stable and high gas concentration in treatment area
- Automated humidation of CO$_2$ increases efficiency of treatment since the start
- Gas temperature may be regulated from 30°C to 40°C (+/- 1°C)
- Sound signal after end of treatment
- Controlled piping away of CO$_2$ after end of treatment
- Mobile bed construction
- Regulated position of head support

Technical data:
- Dimensions (L x W x H) [cm]: 215 x 70 x 98
- Height of laying level [cm]: 59
- Power supply [V/Hz]: 230/50
- Usage of CO$_2$ [l/min]: average 18